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Local explanation method for text classification

input instance

Local explanation
method

neighborhood
construction What should be the

black box N(x) neighborhood of a text?

b
surrogate model
m
»)

!

decision explanation
34 e




Local explanation method for text classification
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XP ROAX - local eXplanation with PROgressive neighborhood ApproXimation

* How to construct a neighborhood in a high-dimensional latent space?
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XP ROAX - local eXplanation with PROgressive neighborhood ApproXimation

* Picking neighbors (with the opposite label) from a corpus as landmarks

* Two-staged progressive approximation




Two-staged progressive approximation

Algorithm 1 Neighborhood approximation

Input: 2: query instance; C: set of counterfactual landmarks

Output: N,,.,: generated neighbors; C',.,,: updated C'

1: Chew = 0
2: repeat
3 Zp, zg = RandomlyDraw(C, 2)

# draw randomly 2 vectors from the landmark set
4 7' =1(zp, 2q)

# Ist interpolation: between counterfactuals

5: /= @
6: for z; € Z' do # 2nd interpolation: between polarities
7: if b(D(z;)) # b(x) then
8: Z+— Z+1(z,E(x))
9: end if
10:  end for
11:  z. = ClosestCounterfactual(Z, 1)
12: Chew.insert(z.)
13: i'r\'rneu.r — i"‘\'rne-u.r + D(Z )
14: until & times

15:

return N, ew. Chew
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Experimental results

Competitors:
 LIME: applies word dropping to the input text for the neighborhood construction

* XSPELLS: deploys a generative autoencoder and performs random sampling in the latent space
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Experimental results

Input 2 fries are n’'t worth coming back . Random Forest b(-): positive, Dataset: Yelp
Saliency: fries are n’t {worth coming back . Extrinsic words®: - perfect
Factuals: Counterfactuals:
1) the fries were n’t worth coming. 1) _unk_do n’t bother in back.
XPROAX 2) _unk_P are n’t worth going back. 2) _unk_ do n’t bother going back.
3) the fries were worth coming back. 3) _unk_ do n’t be anybody back.
4) the fries were worth going back. 4) a few fries were definately coming back.
5) you do n’t be worth coming. 5) _unk_ do n’t be anybody.
Factuals: Counterfactuals:
1) it seems well they did 1) both to die
2) and i feel like on service 2) all else s
3) dave is excellent 3) every 1 may
XSPELLS 4) everything we will get 4) who makes me money last
5) all i hung up is nice 5) all were nt pricey
Common words in factuals: Common words in counterfactuals:
seems (0.091), well (0.091), feel (0.091) die (0.111), else (0.111), every: (0.111)
LIME Saliency: fries are n’t - coming back .
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Conclusion

* Alocal model-agnostic explanation method for text classification
* Construct the neighborhood of a text in a latent space with the progressive approximation approach

* Detailed explanations for better understanding
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