

Local explanation methods

Research challenges

- Existing researches (e.g. LIME) using word dropping will lead to incomplete sentences, which may not be the optimal neighborhood.
- Other methods (e.g. XSPELLS) sampling randomly in a latent space can result in low-quality neighborhoods.

Experimental results – Qualitative evaluation

- Qualitative evaluation illustrates the usefulness of explanations intuitively.
- In the given example below, the term "not" as an extrinsic word contributing to the opposite sentiment proves that the model is able to handle a negation context, and the misclassification is mainly caused by the term "n't".

XPROAX: overview

Idea: Deploy a generative autoencoder to construct a better neighborhood (semantically meaningful and grammatically correct); use landmarks from a corpus to approximate the neighborhood and follow the data manifold.

- a) Map the input text x into the latent space Z via the encoder E
- b) Generate neighboring texts in the latent space Z using progressive neighborhood approximation
- c) Reconstruct neighboring texts from latent vectors with the decoder D
- d) Label the neighboring texts with the black box
- e) Train a surrogate model with the neighboring texts N(x) for explanations

Input 2	fries are n't worth coming back .	Random Forest $b(\cdot)$: positive , Dataset: Yelp
XPROAX	Saliency: fries are n't worth coming back .	Extrinsic words ^a : not perfect
	Factuals:	Counterfactuals:
	1) the fries were n't worth coming.	1) _unk_ do n't bother in back.
	2) _unk_ ^b are n't worth going back.	2) _unk_ do n't bother going back.
	3) the fries were worth coming back.	3) _unk_ do n't be anybody back.
	4) the fries were worth going back.	4) a few fries were definately coming back.
	5) you do n't be worth coming.	5) _unk_ do n't be anybody.
XSPELLS	Factuals:	Counterfactuals:
	1) it seems well they did	1) both to die
	2) and i feel like on service	2) all else s
	3) dave is excellent	3) every i may
	4) everything we will get	4) who makes me money last
	5) all i hung up is nice	5) all were nt pricey
	Common words in factuals:	Common words in counterfactuals:
	seems (0.091), well (0.091), feel (0.091)	die (0.111), else (0.111), every: (0.111)
LIME	Saliency: fries are n't worth coming back .	

^aWords with high importance that only appeared in the neighbors (not appeared in the input text). ^bGeneric unknown word token for words out of the vocabulary.

Acknowledgements Niedersächsisches Ministerium für Wissenschaft und Kultur

The first author is supported by the State Ministry of Science and Culture of Lower Saxony, within the PhD program ``Responsible Artificial Intelligence in the Digital Society''.

XPROAX – local eXplanations for text classification with PROgressive neighborhood ApproXimation

Yi Cai¹, Arthur Zimek², Eirini Ntoutsi^{1,3}

Input text Decoder Latent space Encoder

XPROAX: Progressive neighborhood approximation

- (1) Map the input x into the latent space z = E(x)
- (2) Select the *k*-closest counterfactuals from a corpus as **landmarks** based on the latent distances
- (3) 1st interpolation: interpolate between the landmarks to better fill the gap between them to cover the decision boundary
- the first interpolation
- (5) Repeat step 3 and step 4 until no closer counterfactual to the input text can be found

Experimental results – Quantitative evaluation

Dataset and Model	Explaining Method	Confidence Drop	Avg. Confidence Drop per op	$\begin{array}{c} \Delta\eta\\ (0.3\text{-}0.1)\end{array}$
Yeln	baseline	0.247 ± 0.31	0.179 ± 0.24	/
	LIME	0.364 ± 0.29	0.297 ± 0.26	+0.213
	XSPELLS	0.132 ± 0.26	0.170 ± 0.27	+0.032
	XPROAX	0.740 ± 0.22	0.417 ± 0.33	+0.153
Veln	baseline	0.136 ± 0.32	0.094 ± 0.23	/
	LIME	0.564 ± 0.46	0.348 ± 0.44	+0.230
	XSPELLS	0.084 ± 0.26	0.102 ± 0.27	-0.014
DININ	XPROAX	0.825 ± 0.35	0.302 ± 0.43	+0.206
Amazon	baseline	0.163 ± 0.19	0.118 ± 0.14	/
Amazon	LIME	0.209 ± 0.18	0.201 ± 0.16	+0.185
	XSPELLS	0.048 ± 0.13	0.058 ± 0.14	+0.037
КГ	XPROAX	0.506 ± 0.20	0.354 ± 0.21	+0.126
Amazon	baseline	0.287 ± 0.27	0.209 ± 0.21	/
	LIME	0.424 ± 0.27	0.238 ± 0.17	+0.156
	XSPELLS	0.095 ± 0.18	0.122 ± 0.18	+0.037
DININ	XPROAX	0.665 ± 0.21	0.298 ± 0.25	+0.164

- Editions of inputs following explanations provided by XPROAX have the largest effect on the prediction in all experimental settings.
- XPROAX outperforms the two competitors in terms of compactness (confidence drop per operation) in 3 settings out of 4.
- The comparison to XSPELLS shows that the sampling strategy in the latent space will have a significant impact on the quality of final explanations.

¹L3S Research Center, Hannover, Germany, ²Department of Mathematics and Computer Science (IMADA), University of Southern Denmark (SDU), Odense, Denmark, ³Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany Contact: cai@l3s.de

XPROAX: Explanation

XPROAX provides explanations, which consist of four components:

- *1.Intrinsic* words words in the input *x*;
- *2.Extrinsic* words words only appeared in the neighborhood *N*;
- 3.Top-*k* factuals
- 4.Top-*k* counterfactuals

(4) 2^{nd} interpolation: interpolate between the target point z and the counterfactuals generated during

6 Select the nearest points and reconstruct the texts from the latent vectors as the neighborhood of x

Conclusion

- The experiments, both qualitatively and quantitatively, show that XPROAX outperforms state-of-the-art methods.
- The quality of neighborhoods affects final explanations.
- Explanations on text classifiers do not need to be limited by the words that appeared in the input; extrinsic words can also contribute to the understanding.
- In comparison to XSPELLS, the careful construction of the neighborhood overcomes the weakness of randomly sampling in the latent space.

Neighborhood